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Abstract
We study the strong role played by structural (quenched) heterogeneities
on static and dynamic properties of the frustrated Ising lattice gas in two
dimensions, already in the liquid phase. Different from the dynamical
heterogeneities observed in other glass models, in this case they may have
infinite lifetime and be spatially pinned by the quenched disorder. We consider
a measure of local frustration to show how it induces the appearance of spatial
heterogeneities and how this reflects in the observed behaviour of equilibrium
density distributions and dynamic correlation functions.

PACS numbers: 05.50.+q, 61.43.Fs

1. Introduction

Much of the work in the theory of the glass transition has been concentrated in the precursor
phenomena present in the high temperature (or low density) phase on approaching the glass
transition. The (equilibrium) dynamics in this region shows two qualitatively different
regimes: a short time relaxation associated with the rattling of particles inside cages formed
by their neighbours and a long time structural relaxation which, as density increases (or T
decreases), takes longer and longer times [1, 2]. In supercooled liquids, the presence of a
crossover temperature below which exponentially decaying correlation functions typical of
the liquid phase become stretched has been observed [3]. The origin of this stretching of
relaxations is associated with the gradual appearance of heterogeneities in the space/time
domain. Understanding the emergence of these heterogeneities is at the heart of the nature
of the glass transition and has been the source of a lot of theoretical and experimental work
[4–6]. Nevertheless, a unifying microscopic theory is still lacking and only a few universal
properties related to heterogeneities have been found.
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In real space, dynamical heterogeneities correspond to particles with different mobilities.
In computer simulations of simple glass formers the presence of fast and slow particles has
been observed. The typical time scales of the two types of particles can be identified for
example by examining the behaviour of the non-Gaussian parameter associated with the van
Hove correlation function [7, 8]. This leads to the identification of a growing time scale which
seems to diverge at the mode coupling transition temperature (TMCT). This characteristic time
arises naturally when computing a suitable time dependent four point correlation function or
dynamical non-linear susceptibility [9, 10]. As the temperature approaches TMCT from above,
this dynamical response shows a growing peak at a characteristic time t∗ and then relaxes at
long times to its equilibrium value. This growing characteristic time of the four point functions
has been associated with the presence of long lived dynamical heterogeneities (clusters of very
slow or immobile particles).

From a landscape point of view, the emergence of stretching seems to be the consequence
of the gradual confinement of the system in low (free) energy regions of phase space surrounded
by growing barriers as temperature decreases. The confinement is due in part to the dramatic
decrease of escape directions in configuration space on approaching the glass transition
[11–13]. In simple models of binary mixtures it has been found that stretched relaxations
are associated with long lived superstructures or ‘metabasins’ in configuration space [14]. The
relaxation from single metabasins shows a stretched behaviour and different metabasins relax
with different characteristic times, giving rise to the overall stretching observed for example
in the α region of the incoherent scattering function.

At variance with the enormous amount of work on the problem of heterogeneities
in glasses, much less is known about them in systems with quenched disorder [15–18].
Different from true glasses, where the inhomogeneities are dynamically created by the
self-induced local frustration and persist during a given timescale, the quenched disorder
induces structural heterogeneities that may have infinite lifetime. In this sense they can
be called quenched heterogeneities. Since the inhomogeneities are pinned by the disorder,
they may be easier to detect and characterize than in systems with self-induced disorder.
Thus, the posed question is to what extent these heterogeneities influence the relaxation
properties and how different regions of the sample differ from each other. Moreover, how
do they affect the different degrees of freedom present in the system (such as particles and
spins)?

To answer these questions, in this work we address the problem of heterogeneities
in systems with quenched disorder by focusing the analysis on the behaviour of a two-
dimensional version of the frustrated Ising lattice gas (FILG) which has been proposed as
a simple lattice glass model [19]. Nevertheless, it is known that the presence of quenched
disorder in the definition of the model introduces some features not typical of real glasses. In
particular, it acts as a pinning field for heterogeneities, some of which can have infinite
lifetime. This is reflected in the behaviour of dynamical correlation functions and in
the non-linear susceptibility and compressibility as will be shown below. In this context
we will consider a measure of local frustration, and show how it induces the appearance
of spatial heterogeneities and how this reflects in the observed behaviour of equilibrium
density distributions and dynamic correlation functions. For the sake of comparison with
other glassy systems without quenched disorder we also discuss the behaviour of the non-
linear susceptibility associated with the spin degrees of freedom and of the non-linear
compressibility of the density variables. Finally, an analysis of the universal behaviour
in terms of hole variables recently introduced [20, 21] shows that this system seems to
be in a different universality class than the previously investigated glass models without
disorder.
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2. The model

The frustrated Ising lattice gas [19, 22–24] is defined by the Hamiltonian

H = −J
∑

〈ij〉
(εij σiσj − 1)ninj − µ

∑

i

ni (1)

where J → ∞. At each site of the lattice there are two different dynamical variables:
local density (occupation) variables ni = 0, 1 (i = 1, . . . , N) and internal degrees of
freedom, σi = ±1. The usually complex spatial structure of the molecules of glass forming
liquids, which can assume several spatial orientations, is in part responsible for the geometric
constraints on their mobility. Here we consider the simplest case of two possible orientations,
and the steric effects imposed on a particle by its neighbours are felt as restrictions on its
orientation due to the quenched variables εij connecting nearest neighbour sites. The first
term of the Hamiltonian ensures that when J is large, any two neighbouring particles will have
their spins satisfying the connection between them. Finally µ represents a chemical potential
ruling the system density (at fixed volume).

This model has been studied mainly through simulations [19, 22, 24] in 3d and analytically
in mean field [25, 26]. In the low density (high temperature) phase, the system behaviour
is liquid like, the dynamics is fast, time-translationally invariant and obeys the fluctuation–
dissipation theorem. By increasing the density (or lowering the temperature), the system has
a spin glass transition characterized by a divergence of the static nonlinear susceptibility. In
terms of density, this transition point is located quite close to the point where the system
suffers a dynamical arrest, and where the particles are no longer able to diffuse. After a
sub-critical quench, the dynamics is slow and history dependent. Besides this, it presents
ageing and violates the fluctuation–dissipation theorem (we refer the interested reader to [24]
and references therein).

3. Static properties

Since bonds are created at random (with probability 1/2 of being ±1), the system is not
homogeneous at the lengthscale of the lattice spacing. Each site belongs to several minimal
plaquets and there is a probability that all (or neither) of these are frustrated. This would
influence the dynamics at a local level since the system is no longer invariant under spatial
translations. Thus we may ask which are the consequences of these quenched heterogeneities
on the equilibrium properties of the system.

When evaluating the partition function for the J → ∞ case at finite density, the
configurations in which particles close any frustrated loop will have zero probability. The
average density will no longer be site independent and the density distribution P(ρ) will
be inhomogeneous, i.e. will show spatial fluctuations. Homogeneity will only be recovered
when ρ → 0. For small densities, the distribution will be Gaussian while deviations from
Gaussianity should be evident as the density increases. The forbidden configurations introduce
spatial inhomogeneities that are long lived as they derive from the quenched random underlying
connections. In other lattice models, as well as in structural glasses, the disorder is not
quenched, which restores translational invariance if the measure time is much larger than the
dynamical heterogeneities characteristic time. An example of a system with quenched but not
random frustration that does not present these inhomogeneities is the fully frustrated version
of the FILG.
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(a) (b)

Figure 1. (a) Example of a {γi} configuration. Black sites are those whose four neighbour plaquets
are non-frustrated (γi = 4) while white sites have all frustrated (γi = −4). Intermediate values of
γi are represented by different degrees of grey. (b) Sites whose average density is higher than 0.9
for µ = 4, corresponding to a global ρ � 0.74.

To quantify this we use the (local) coarse-grained quantity [15, 17]

γi ≡
∑

P(i)

∏

j∈P(i)

εij (2)

where P(i) are the minimal plaquets containing the site i. That is, for every site, we consider
the four minimal plaquets that contain that site (12 in d = 3) and we check how many of
these plaquets are frustrated, i.e. the product of the connections in the loop is negative. In
this nearest neighbour plaquet, approximation sites that are maximally frustrated have all of
its four plaquets with negative products and sites with no frustration have all plaquets with
positive products. In other words, γi may assume values between −4 and 4. Figure 1(a) shows
a configuration with inhomogeneous distribution of local frustration.

We now consider how these structural clumps change the system’s behaviour. In
figure 1(b) we show, for the same realization of disorder of figure 1(a), only the sites that have
an averaged occupation greater than 0.9. In this figure, µ = 4, and the total average density is
roughly 0.74, well below 0.9. The presence of preferred positions is a direct consequence of
the existence of islands of low frustration, as can be seen by comparing figures 1(a) and (b). As
the chemical potential increases, the number of these sites also increases, as expected. These
heterogeneities make the system not translationally invariant even in the low density liquid
phase. This can be made clear by measuring the distribution P(ρi) of local averaged densities
ρi = 〈ni〉 as shown in figure 2. In homogeneous systems all sites have the same average
density and the distribution, for a finite number of measurements, is a Gaussian centred in
this value. Examples might be a non-disordered version of the model considered here (with
fully frustrated connections) or models for structural glasses without quenched variables. In
the last case, the annealed character of the frustration allows the homogeneity to be recovered
again. The broadness of the curves does not seem related either to finite average times or to
finite lattice sizes, but rather to the fact that, when not limited to the nearest neighbour plaquet
approximation, there are several values that the local frustration may assume generating in
this way the broad distributions seen in the above figures.

To make clear the origin of this broad distribution, we considered the density distribution
P(ρi, γi) separately for each value of the local frustration γi , which has a well-defined density
around which its particular distribution is centred. The result is seen in figure 3. Moreover,
the separation between these curves increases as the density increases and the deviation from
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Figure 2. Distribution of local densities for several values of µ and L = 20 in 2d. Notice the
multi-peak structure that becomes more apparent as µ increases.
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Figure 3. Distribution of local densities for µ = 3 and L = 20 in 2d. The bold curve is the
sum of several others, P(ρi). From left to right, we have 4, 3, . . . , 0 locally frustrated loops. The
distribution has an internal structure. Inset: The distance � between the average densities for
extreme values of γ , P(ρi , 4) and P(ρi ,−4).

Gaussianity becomes apparent. We may define � as the difference between the average
densities of the peaks associated with the lowest and highest values of γ , � ≡ 〈ρi〉4 − 〈ρi〉−4
where the averages 〈. . .〉γi

are over P(ρi, γi). When there is no difference, � = 0, the
particles do not feel the underlying landscape and all sites have the same average equilibrium
density. In this model this happens for very low densities. As the density increases, the
dynamics becomes landscape influenced and P(ρi) has a more complex structure, no longer
being a simple Gaussian. This is exemplified in figure 3 for µ = 3. One can also note that
the distributions are asymmetric around γi = 0: for example, in the case of P(ρi,−2) and
P(ρi, 2) the former is broader and shorter while the latter is higher and more concentrated.
A possible explanation is that sites with negative values of γi are more influenced by higher
order plaquets than sites with positive γi , thus having a broader distribution.

In d = 3 the overall picture is similar to that of d = 2. Nevertheless, some differences
are evident when comparing figures 2 and 4 and one may wonder if the minimum plaquet
approximation used in the definition of the local frustration parameter works in d = 3 as it
does in d = 2. Still within the same approximation, the distribution of local densities for
different local frustrations presents also different peaks (not shown), a manifestation of the
lack of translational invariance also in d = 3.
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Figure 4. Distribution of local densities for several values of µ and L = 10 in 3d. Different from
the 2d case, the curves do not seem to present internal structure.
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Figure 5. The fraction of holes ν as a function of ρ − ρc for L = 50. Note that ν does not vanish
at ρc � 0.79. The behaviour near ρc is linear with the density. Inset: diffusion coefficient as a
function of ρc − ρ. The diffusivity goes to zero as (ρc − ρ)φ with φ � 2.4.

Recently, a description of the jamming transition has been introduced that unveiled some
universal mechanism leading to the dynamical arrest that happens at ρc. The notion of
hole is introduced: empty sites that have at least one neighbour particle able, due to the
energetic or to the kinetic constraints, to jump to the initial empty site. We measure, for
several fixed densities4 the density of holes, ν. It has been conjectured, and supported by
numerical simulations on some lattice models [20, 21], that the diffusivity depends on ν as
D ∼ (ν − ν0)

2 where ν0 is a possible residual density of holes at ρc (rattlers) that do not
contribute to the diffusion. We show our results for the FILG in d = 2 in figure 5. We obtain
D ∼ (ν − 0.056)2.4. The Kob–Andersen is another example of model where ν0 
= 0. Some
things are remarkable: first, we note that the FILG belongs to a different universality class.
Second, the value of ν at ρc is much larger than in other models. Note also that the behaviour
of ν near ρc is linear. The fact that the FILG does not belong to the same universality class of
several other models is very interesting and the reason may be related to the inhomogeneity
of the underlying connections structure. Indeed, we measure the density of holes accordingly

4 In this case, when diffusing, the particle carries its spin.
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Figure 6. Equilibrium particle correlations Cn(t) for several values of µ for a dynamics with spin
flip, particle creation–destruction and diffusion.

to the γi of the hole site. For small values of ρ there is no difference between these values and
all curves collapse. The fact that for higher densities these curves fall apart is an indication
that the holes also have preferred sites and tend to form small clusters. Thus, near ρc, the
mechanism leading to diffusion is no longer the pairwise collisions between holes but a more
complicated process involving these small clusters, which may lead to a failure of the ν-square
law5. Further work along this line has to be done in order to clarify this issue.

4. Dynamical properties

In [23] the non-equilibrium behaviour of the model was shown to present interesting ageing
properties similar to those observed in glass forming systems. Here we address equilibrium
density correlations instead and the role of heterogeneities in the low density phase. The
density autocorrelations are defined by

cn(t) = 1

N

∑

i

[〈ni(t)ni(0)〉 − 〈ni(0)〉2] (3)

and Cn(t) ≡ cn(t)/cn(0), where the averages are both over samples and initial states. The
densities are also averaged over the thermal history in each sample. Note that only in
the case where the system is homogeneous, that is, the average quantities are invariant
under spatial translations, we can substitute the last term in the numerator by ρ2, otherwise∑

i 〈ni〉2 
= 〈∑
i ni

〉2
. In the region of densities considered here, these correlations do not

present the usual two step dynamics observed in other models as can be seen in figure 6.
Nevertheless, two regimes can be clearly observed and all the curves can be fitted by stretched
exponentials (not shown) in the first regime. The second regime at longer times observed for
the largest densities can also be fitted by stretched exponentials with other parameters and
probably will tend to develop a plateau at higher densities.

5 Deviations from this law were also observed in the KA model in the density regime near the dynamical arrest
(M Sellitto, private communication).
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Figure 7. Equilibrium diluted spin correlations Cns(t) for several values of µ for a dynamics with
spin flip, particle creation–destruction and diffusion. The symbols are the same as in figure 6.

For the same values of the chemical potential or mean density shown in figure 6, the diluted
spin correlations show a different behaviour. The correlations between spins on occupied sites
are defined as

Cns(t) = 1

N

∑

i

〈ni(t)Si(t)ni(0)Si(0)〉. (4)

The results for several values of µ are shown in figure 7 together with the best fits to stretched
exponential decays for the long time regime. Interestingly, the correlations Cn and Cns decay
with very different timescales: density correlations decay much faster than the diluted spin
correlations. This can be understood as follows. Particles can be created/destroyed and
diffused through the lattice, forming clusters of neighbouring particles. Once they belong to
the same cluster, the nature of the interaction enforces them to have spins satisfying all the
bonds in the cluster, otherwise they should move apart. Thus, when a site contributes for the
correlation at different times, the contribution will be positive, unless there is enough time for
the whole cluster to flip all its spins. Moreover, the percolation transition is just below µ = 3
and the considered clusters are large, making the decorrelation time quite large. The diluted
spin correlations start to develop an incipient plateau as the value of the chemical potential
increases. We expect that by further increasing the value of µ, this plateau will be more
noticeable and the characteristic decay time will tend to diverge at the dynamical transition. In
figure 8 we show an Arrhenius plot of the relaxation times showing that they tend to diverge for
µ → ∞. This is different from the behaviour observed in the three-dimensional model [27],
which shows a power law divergence at a finite value of µ. Thus, while the three-dimensional
model presents a spin glass transition at a finite chemical potential, the two-dimensional model
only has a transition at µ → ∞.

Both correlations can also be measured only for sites presenting a given value of the
frustration parameter γi . The curves for the five possible values (in d = 2) are shown in
figures 9 and 10 for µ = 3. Fits to stretched exponential decay are also shown for the diluted
spin correlations. They are normalized to unity but, recalling figure 3, the number of sites
contributing to each one of the curves is different. The behaviour for Cn(t) is very different
and almost all curves give the same correlation, only sites with γi = 4 differ slightly from the
others (and their contribution to the overall curve is small). On the other hand, for Cns(t) the
curves are strongly resolved and we note that the dynamics is faster in those sites in highly
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Figure 9. Equilibrium particle correlations Cn(t) for the five possible values of γi and µ = 3. The
line is the full correlation, from figure 6.

frustrated regions. This may be due to the fact that since particle creation–destruction is
allowed, particles appearing in these regions have a higher probability to go elsewhere or be
destroyed (as these are regions of less than average densities), which makes the decorrelation
time small. On the other hand, low frustration regions are those preferred by the particles
and correlations take much more time to decay (as these are regions of larger than average
densities). The total correlation (not shown) follows closely the γi = 0 or mean frustration
curve. Note that all local correlations show stretched exponential relaxations irrespective of
the value of the local frustration being high or low. In this scenario the stretched relaxation
does not emerge as a consequence of some kind of convolution of local exponential relaxations
with different time scales. At this level of description, the stretching, although heterogeneous
due to different local frustration, is intrinsic. As the density increases this scenario does not
change qualitatively.

It is interesting to remark that for high values of µ the decay of the diluted spin correlation
starts to develop a plateau and the sites responsible for this behaviour are those that are less



10916 M H Vainstein et al

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
ns

 (
t)

t

Figure 10. Equilibrium dilute spin correlations Cns(t) for the five possible values of γi and µ = 3.
The symbols are the same as in figure 9. Note that low frustration sites already show a small
plateau, although in the full correlation (figure 7), this is not yet noticeable.
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Figure 11. χn
4 (t) as a function of time for different chemical potentials. For increasing chemical

potential (hence densities) the peak increases and shifts to longer times.

frustrated. The effect is not much pronounced because the summed up effect of γi = −2 and
0 sites is dominant.

As the dynamical heterogeneities have attracted much attention recently, several quantities
have been devised to quantify them [4]. Among them, of particular interest is the four point
correlation (or dynamical non-linear response) defined as

χn
4 (t) = N

(〈
C2

n(t)
〉 − 〈Cn(t)〉2) . (5)

Away from the transition, this function presents a maximum at a time t∗ that is a measure
of the timescale during which the particles forming the heterogeneity are correlated. The
long time behaviour of this quantity is a measure of its equilibrium value. In figure 11 we
plot χn

4 (t). Analogously to what happens in other glass models it presents a broad peak that
shifts to longer times and gets higher as the density increases. Nevertheless, an important
difference from other models is that after the peak the non-linear compressibility does not
decay too much and develops a density-dependent plateau at long times. The persistence of
density correlations is a clear signature of the presence of very long lived heterogeneities,
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after a crossover time and the stronger growth of the subsequent plateau at variance with the
behaviour of χn

4 (t) in figure 11.

a consequence of the pinning effect of the quenched disorder present in the model. The
possible divergence of the equilibrium (infinite time) limit of the non-linear compressibility
should point to the existence of a thermodynamic transition associated with the density degrees
of freedom not yet observed in this model.

Analogously, for diluted spin correlations we can evaluate equation (5) using Cns(t) in
the place of Cn(t). The resultant Xns

4 (t) is seen in figure 12. The behaviour is similar to that
observed for the density variables, but instead of a peak we observe a crossover time after
which this non-linear susceptibility saturates in a finite density-dependent value. In this case
the height of the plateau seems to diverge much more rapidly than for the compressibility
giving more plausibility to the presence of a thermodynamic transition in the spin variables,
probably for µ → ∞. The crossover to a plateau, instead of the presence of a peak, clearly
points to the appearance of a persistent correlation length associated with the spin degrees of
freedom. It would be interesting to check if these persistence are a manifestation of a growing
structural correlation length which might diverge at an equilibrium spin glass transition similar
to that present in d = 3.

5. Conclusions

In this paper we considered the role played by heterogeneities present in a model with quenched
disorder. Different from self-induced frustration models here the heterogeneities may be
pinned by the local frustration and this allows a simple characterization of them. The effects
of these pinned heterogeneities on time correlation functions and distribution of local densities
have been analysed. The system forms clumps in the liquid phase even when the particles
either do not interact or strongly repel each other [28]. Moreover, these clumps are long lived
and it would be interesting to study their size distribution and how they are correlated [29].

A simple measure of local frustration was considered and a strong correlation with the
inhomogeneous density distribution was found. The use of γi allowed to decompose the local
density distributions in components related to the degree of local frustration. However, the
use of γi as a measure of the local frustration considering only the minimal plaquets has
to be considered as a first-order approximation. Indeed, higher order plaquets, involving
larger loops, have to be taken into account in order to obtain the full dependence of ρi on γi .



10918 M H Vainstein et al

For example, in the d = 2 case, there exists 12 plaquets of second order (those having six
bonds). It is an open problem to determine to what extent the present results may change
by considering the effects of larger loops in γi and how they determine the average local
density and affect the relaxation properties. It was also shown that dynamic correlations can
be decomposed according to the local values of frustration and in each case the relaxations are
essentially stretched although the degree of stretching is of course dependent on the degree
of local frustration. It would be interesting to study the possible relation between local
correlation functions in the out-of-equilibrium regime and the violation of the fluctuation–
dissipation theorem [16, 30–34] with the local frustration as defined by the parameter γi .

Further insight into the relation of the FILG with other models of glasses and spin
glasses can be gained by analysing non-linear responses. We showed that two such responses
associated with different degrees of freedom in the model behave differently in some important
aspects. At variance with models of glasses, the spin non-linear susceptibility shows a
crossover time after which the response saturates instead of the characteristic peak observed
for example in models with constrained dynamics. Also the rapid growth of the plateau at long
times suggests the developing of a structural correlation length associated with a possible spin
glass transition. This remains to be confirmed. The non-linear compressibility instead shows
a broad peak but with a modest further relaxation to a density-dependent plateau. In this case
one can associate this plateau with the formation of very long lived quenched heterogeneities.
From the observed behaviour of these non-linear responses one can conclude that the FILG
does not behave either as a proper spin glass or as a glass sharing some characteristics with
both kinds of systems.

Although the model considered here has been originally introduced as an attempt to obtain
a finite dimensional lattice system with glassy properties similar to structural glasses, the main
drawback is the lack of invariance under spatial translations already in the liquid phase. There
are several ways to restore this invariance. For example, by considering spatially coarse-
grained variables or by including a temporal evolution of the bonds [22]. As it stands this
model still may be interesting to study transport in disordered media (see [35] and references
therein) which has been of much interest recently.
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